A demo of power estimation by simulation for a cluster randomized trial with a time-to-event outcome

A colleague reached out for help designing a cluster randomized trial to evaluate a clinical decision support tool for primary care physicians (PCPs), which aims to improve care for high-risk patients. The outcome will be a time-to-event measure, collected at the patient level. The unit of randomization will be the PCP, and one of the key design issues is settling on the number to randomize. [Read More]

Simulating time-to-event outcomes with non-proportional hazards

As I mentioned last time, I am working on an update of simstudy that will make generating survival/time-to-event data a bit more flexible. I previously presented the functionality related to competing risks, and this time I’ll describe generating survival data that has time-dependent hazard ratios. (As I mentioned last time, if you want to try this at home, you will need the development version of simstudy that you can install using devtools::install_github(“kgoldfeld/simstudy”). [Read More]

Adding competing risks in survival data generation

I am working on an update of simstudy that will make generating survival/time-to-event data a bit more flexible. There are two biggish enhancements. The first facilitates generation of competing events, and the second allows for the possibility of generating survival data that has time-dependent hazard ratios. This post focuses on the first enhancement, and a follow up will provide examples of the second. (If you want to try this at home, you will need the development version of simstudy, which you can install using devtools::install_github(“kgoldfeld/simstudy”). [Read More]

Follow-up: simstudy function for generating parameters for survival distribution

In the previous post I described how to determine the parameter values for generating a Weibull survival curve that reflects a desired distribution defined by two points along the curve. I went ahead and implemented these ideas in the development version of simstudy 0.4.0.9000, expanding the idea to allow for any number of points rather than just two. This post provides a brief overview of the approach, the code, and a simple example using the parameters to generate simulated data. [Read More]

Simulating survival outcomes: setting the parameters for the desired distribution

The package simstudy has some functions that facilitate generating survival data using an underlying Weibull distribution. Originally, I added this to the package because I thought it would be interesting to try to do, and I figured it would be useful for me someday (and hopefully some others, as well). Well, now I am working on a project that involves evaluating at least two survival-type processes that are occurring simultaneously. [Read More]